Files
droidfish/DroidFish/jni/stockfish/position.cpp

1454 lines
44 KiB
C++
Raw Normal View History

2011-11-12 19:44:06 +00:00
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
Copyright (C) 2008-2013 Marco Costalba, Joona Kiiski, Tord Romstad
2011-11-12 19:44:06 +00:00
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <algorithm>
2011-11-12 19:44:06 +00:00
#include <cassert>
#include <cstring>
#include <iomanip>
2011-11-12 19:44:06 +00:00
#include <iostream>
#include <sstream>
#include "bitcount.h"
#include "movegen.h"
#include "notation.h"
2011-11-12 19:44:06 +00:00
#include "position.h"
#include "psqtab.h"
#include "rkiss.h"
#include "thread.h"
#include "tt.h"
using std::string;
using std::cout;
using std::endl;
static const string PieceToChar(" PNBRQK pnbrqk");
2011-11-12 19:44:06 +00:00
CACHE_LINE_ALIGNMENT
Score psq[COLOR_NB][PIECE_TYPE_NB][SQUARE_NB];
Value PieceValue[PHASE_NB][PIECE_NB] = {
{ VALUE_ZERO, PawnValueMg, KnightValueMg, BishopValueMg, RookValueMg, QueenValueMg },
{ VALUE_ZERO, PawnValueEg, KnightValueEg, BishopValueEg, RookValueEg, QueenValueEg } };
namespace Zobrist {
Key psq[COLOR_NB][PIECE_TYPE_NB][SQUARE_NB];
Key enpassant[FILE_NB];
Key castle[CASTLE_RIGHT_NB];
Key side;
Key exclusion;
}
Key Position::exclusion_key() const { return st->key ^ Zobrist::exclusion;}
namespace {
// min_attacker() is an helper function used by see() to locate the least
// valuable attacker for the side to move, remove the attacker we just found
// from the bitboards and scan for new X-ray attacks behind it.
template<int Pt> FORCE_INLINE
PieceType min_attacker(const Bitboard* bb, const Square& to, const Bitboard& stmAttackers,
Bitboard& occupied, Bitboard& attackers) {
Bitboard b = stmAttackers & bb[Pt];
if (!b)
return min_attacker<Pt+1>(bb, to, stmAttackers, occupied, attackers);
occupied ^= b & ~(b - 1);
if (Pt == PAWN || Pt == BISHOP || Pt == QUEEN)
attackers |= attacks_bb<BISHOP>(to, occupied) & (bb[BISHOP] | bb[QUEEN]);
if (Pt == ROOK || Pt == QUEEN)
attackers |= attacks_bb<ROOK>(to, occupied) & (bb[ROOK] | bb[QUEEN]);
attackers &= occupied; // After X-ray that may add already processed pieces
return (PieceType)Pt;
}
template<> FORCE_INLINE
PieceType min_attacker<KING>(const Bitboard*, const Square&, const Bitboard&, Bitboard&, Bitboard&) {
return KING; // No need to update bitboards, it is the last cycle
}
} // namespace
2011-11-12 19:44:06 +00:00
/// CheckInfo c'tor
CheckInfo::CheckInfo(const Position& pos) {
Color them = ~pos.side_to_move();
ksq = pos.king_square(them);
2011-11-12 19:44:06 +00:00
pinned = pos.pinned_pieces(pos.side_to_move());
dcCandidates = pos.discovered_check_candidates();
2011-11-12 19:44:06 +00:00
checkSq[PAWN] = pos.attacks_from<PAWN>(ksq, them);
2011-11-12 19:44:06 +00:00
checkSq[KNIGHT] = pos.attacks_from<KNIGHT>(ksq);
checkSq[BISHOP] = pos.attacks_from<BISHOP>(ksq);
checkSq[ROOK] = pos.attacks_from<ROOK>(ksq);
checkSq[QUEEN] = checkSq[BISHOP] | checkSq[ROOK];
checkSq[KING] = 0;
2011-11-12 19:44:06 +00:00
}
/// Position::init() initializes at startup the various arrays used to compute
/// hash keys and the piece square tables. The latter is a two-step operation:
/// First, the white halves of the tables are copied from PSQT[] tables. Second,
/// the black halves of the tables are initialized by flipping and changing the
/// sign of the white scores.
void Position::init() {
RKISS rk;
for (Color c = WHITE; c <= BLACK; ++c)
for (PieceType pt = PAWN; pt <= KING; ++pt)
for (Square s = SQ_A1; s <= SQ_H8; ++s)
Zobrist::psq[c][pt][s] = rk.rand<Key>();
for (File f = FILE_A; f <= FILE_H; ++f)
Zobrist::enpassant[f] = rk.rand<Key>();
for (int cr = CASTLES_NONE; cr <= ALL_CASTLES; ++cr)
{
Bitboard b = cr;
while (b)
{
Key k = Zobrist::castle[1ULL << pop_lsb(&b)];
Zobrist::castle[cr] ^= k ? k : rk.rand<Key>();
}
}
Zobrist::side = rk.rand<Key>();
Zobrist::exclusion = rk.rand<Key>();
for (PieceType pt = PAWN; pt <= KING; ++pt)
{
PieceValue[MG][make_piece(BLACK, pt)] = PieceValue[MG][pt];
PieceValue[EG][make_piece(BLACK, pt)] = PieceValue[EG][pt];
Score v = make_score(PieceValue[MG][pt], PieceValue[EG][pt]);
for (Square s = SQ_A1; s <= SQ_H8; ++s)
{
psq[WHITE][pt][ s] = (v + PSQT[pt][s]);
psq[BLACK][pt][~s] = -(v + PSQT[pt][s]);
}
}
}
/// Position::operator=() creates a copy of 'pos'. We want the new born Position
/// object do not depend on any external data so we detach state pointer from
/// the source one.
2011-11-12 19:44:06 +00:00
Position& Position::operator=(const Position& pos) {
2011-11-12 19:44:06 +00:00
std::memcpy(this, &pos, sizeof(Position));
startState = *st;
st = &startState;
2011-11-12 19:44:06 +00:00
nodes = 0;
assert(pos_is_ok());
return *this;
2011-11-12 19:44:06 +00:00
}
/// Position::set() initializes the position object with the given FEN string.
/// This function is not very robust - make sure that input FENs are correct,
/// this is assumed to be the responsibility of the GUI.
2011-11-12 19:44:06 +00:00
void Position::set(const string& fenStr, bool isChess960, Thread* th) {
2011-11-12 19:44:06 +00:00
/*
A FEN string defines a particular position using only the ASCII character set.
A FEN string contains six fields separated by a space. The fields are:
2011-11-12 19:44:06 +00:00
1) Piece placement (from white's perspective). Each rank is described, starting
with rank 8 and ending with rank 1; within each rank, the contents of each
square are described from file A through file H. Following the Standard
Algebraic Notation (SAN), each piece is identified by a single letter taken
from the standard English names. White pieces are designated using upper-case
letters ("PNBRQK") while Black take lowercase ("pnbrqk"). Blank squares are
noted using digits 1 through 8 (the number of blank squares), and "/"
separates ranks.
2011-11-12 19:44:06 +00:00
2) Active color. "w" means white moves next, "b" means black.
3) Castling availability. If neither side can castle, this is "-". Otherwise,
this has one or more letters: "K" (White can castle kingside), "Q" (White
can castle queenside), "k" (Black can castle kingside), and/or "q" (Black
can castle queenside).
2011-11-12 19:44:06 +00:00
4) En passant target square (in algebraic notation). If there's no en passant
target square, this is "-". If a pawn has just made a 2-square move, this
is the position "behind" the pawn. This is recorded regardless of whether
there is a pawn in position to make an en passant capture.
2011-11-12 19:44:06 +00:00
5) Halfmove clock. This is the number of halfmoves since the last pawn advance
or capture. This is used to determine if a draw can be claimed under the
fifty-move rule.
2011-11-12 19:44:06 +00:00
6) Fullmove number. The number of the full move. It starts at 1, and is
incremented after Black's move.
2011-11-12 19:44:06 +00:00
*/
char col, row, token;
size_t p;
2011-11-12 19:44:06 +00:00
Square sq = SQ_A8;
std::istringstream ss(fenStr);
2011-11-12 19:44:06 +00:00
clear();
ss >> std::noskipws;
2011-11-12 19:44:06 +00:00
// 1. Piece placement
while ((ss >> token) && !isspace(token))
2011-11-12 19:44:06 +00:00
{
if (isdigit(token))
sq += Square(token - '0'); // Advance the given number of files
else if (token == '/')
sq -= Square(16);
else if ((p = PieceToChar.find(token)) != string::npos)
2011-11-12 19:44:06 +00:00
{
put_piece(sq, color_of(Piece(p)), type_of(Piece(p)));
++sq;
2011-11-12 19:44:06 +00:00
}
}
// 2. Active color
ss >> token;
2011-11-12 19:44:06 +00:00
sideToMove = (token == 'w' ? WHITE : BLACK);
ss >> token;
// 3. Castling availability. Compatible with 3 standards: Normal FEN standard,
// Shredder-FEN that uses the letters of the columns on which the rooks began
// the game instead of KQkq and also X-FEN standard that, in case of Chess960,
// if an inner rook is associated with the castling right, the castling tag is
// replaced by the file letter of the involved rook, as for the Shredder-FEN.
while ((ss >> token) && !isspace(token))
{
Square rsq;
Color c = islower(token) ? BLACK : WHITE;
2011-11-12 19:44:06 +00:00
token = char(toupper(token));
2011-11-12 19:44:06 +00:00
if (token == 'K')
for (rsq = relative_square(c, SQ_H1); type_of(piece_on(rsq)) != ROOK; --rsq) {}
2011-11-12 19:44:06 +00:00
else if (token == 'Q')
for (rsq = relative_square(c, SQ_A1); type_of(piece_on(rsq)) != ROOK; ++rsq) {}
2011-11-12 19:44:06 +00:00
else if (token >= 'A' && token <= 'H')
rsq = File(token - 'A') | relative_rank(c, RANK_1);
else
continue;
set_castle_right(c, rsq);
2011-11-12 19:44:06 +00:00
}
// 4. En passant square. Ignore if no pawn capture is possible
if ( ((ss >> col) && (col >= 'a' && col <= 'h'))
&& ((ss >> row) && (row == '3' || row == '6')))
{
st->epSquare = File(col - 'a') | Rank(row - '1');
2011-11-12 19:44:06 +00:00
if (!(attackers_to(st->epSquare) & pieces(sideToMove, PAWN)))
st->epSquare = SQ_NONE;
}
2011-11-12 19:44:06 +00:00
// 5-6. Halfmove clock and fullmove number
ss >> std::skipws >> st->rule50 >> gamePly;
2011-11-12 19:44:06 +00:00
// Convert from fullmove starting from 1 to ply starting from 0,
// handle also common incorrect FEN with fullmove = 0.
gamePly = std::max(2 * (gamePly - 1), 0) + int(sideToMove == BLACK);
2011-11-12 19:44:06 +00:00
st->key = compute_key();
st->pawnKey = compute_pawn_key();
st->materialKey = compute_material_key();
st->psq = compute_psq_score();
2011-11-12 19:44:06 +00:00
st->npMaterial[WHITE] = compute_non_pawn_material(WHITE);
st->npMaterial[BLACK] = compute_non_pawn_material(BLACK);
st->checkersBB = attackers_to(king_square(sideToMove)) & pieces(~sideToMove);
chess960 = isChess960;
thisThread = th;
2011-11-12 19:44:06 +00:00
assert(pos_is_ok());
2011-11-12 19:44:06 +00:00
}
/// Position::set_castle_right() is an helper function used to set castling
/// rights given the corresponding color and the rook starting square.
2011-11-12 19:44:06 +00:00
void Position::set_castle_right(Color c, Square rfrom) {
Square kfrom = king_square(c);
CastlingSide cs = kfrom < rfrom ? KING_SIDE : QUEEN_SIDE;
CastleRight cr = make_castle_right(c, cs);
st->castleRights |= cr;
castleRightsMask[kfrom] |= cr;
castleRightsMask[rfrom] |= cr;
castleRookSquare[c][cs] = rfrom;
Square kto = relative_square(c, cs == KING_SIDE ? SQ_G1 : SQ_C1);
Square rto = relative_square(c, cs == KING_SIDE ? SQ_F1 : SQ_D1);
for (Square s = std::min(rfrom, rto); s <= std::max(rfrom, rto); ++s)
if (s != kfrom && s != rfrom)
castlePath[c][cs] |= s;
for (Square s = std::min(kfrom, kto); s <= std::max(kfrom, kto); ++s)
if (s != kfrom && s != rfrom)
castlePath[c][cs] |= s;
2011-11-12 19:44:06 +00:00
}
/// Position::fen() returns a FEN representation of the position. In case
2011-11-12 19:44:06 +00:00
/// of Chess960 the Shredder-FEN notation is used. Mainly a debugging function.
const string Position::fen() const {
2011-11-12 19:44:06 +00:00
std::ostringstream ss;
2011-11-12 19:44:06 +00:00
for (Rank rank = RANK_8; rank >= RANK_1; --rank)
2011-11-12 19:44:06 +00:00
{
for (File file = FILE_A; file <= FILE_H; ++file)
2011-11-12 19:44:06 +00:00
{
Square sq = file | rank;
2011-11-12 19:44:06 +00:00
if (empty(sq))
2011-11-12 19:44:06 +00:00
{
int emptyCnt = 1;
for ( ; file < FILE_H && empty(++sq); ++file)
++emptyCnt;
ss << emptyCnt;
}
else
ss << PieceToChar[piece_on(sq)];
2011-11-12 19:44:06 +00:00
}
if (rank > RANK_1)
ss << '/';
2011-11-12 19:44:06 +00:00
}
ss << (sideToMove == WHITE ? " w " : " b ");
2011-11-12 19:44:06 +00:00
if (can_castle(WHITE_OO))
ss << (chess960 ? file_to_char(file_of(castle_rook_square(WHITE, KING_SIDE)), false) : 'K');
2011-11-12 19:44:06 +00:00
if (can_castle(WHITE_OOO))
ss << (chess960 ? file_to_char(file_of(castle_rook_square(WHITE, QUEEN_SIDE)), false) : 'Q');
2011-11-12 19:44:06 +00:00
if (can_castle(BLACK_OO))
ss << (chess960 ? file_to_char(file_of(castle_rook_square(BLACK, KING_SIDE)), true) : 'k');
2011-11-12 19:44:06 +00:00
if (can_castle(BLACK_OOO))
ss << (chess960 ? file_to_char(file_of(castle_rook_square(BLACK, QUEEN_SIDE)), true) : 'q');
2011-11-12 19:44:06 +00:00
if (st->castleRights == CASTLES_NONE)
ss << '-';
ss << (ep_square() == SQ_NONE ? " - " : " " + square_to_string(ep_square()) + " ")
<< st->rule50 << " " << 1 + (gamePly - int(sideToMove == BLACK)) / 2;
return ss.str();
2011-11-12 19:44:06 +00:00
}
/// Position::pretty() returns an ASCII representation of the position to be
/// printed to the standard output together with the move's san notation.
2011-11-12 19:44:06 +00:00
const string Position::pretty(Move move) const {
2011-11-12 19:44:06 +00:00
const string dottedLine = "\n+---+---+---+---+---+---+---+---+";
const string twoRows = dottedLine + "\n| | . | | . | | . | | . |"
+ dottedLine + "\n| . | | . | | . | | . | |";
string brd = twoRows + twoRows + twoRows + twoRows + dottedLine;
2011-11-12 19:44:06 +00:00
for (Bitboard b = pieces(); b; )
{
Square s = pop_lsb(&b);
brd[513 - 68 * rank_of(s) + 4 * file_of(s)] = PieceToChar[piece_on(s)];
}
std::ostringstream ss;
2011-11-12 19:44:06 +00:00
if (move)
ss << "\nMove: " << (sideToMove == BLACK ? ".." : "")
<< move_to_san(*const_cast<Position*>(this), move);
2011-11-12 19:44:06 +00:00
ss << brd << "\nFen: " << fen() << "\nKey: " << std::hex << std::uppercase
<< std::setfill('0') << std::setw(16) << st->key << "\nCheckers: ";
for (Bitboard b = checkers(); b; )
ss << square_to_string(pop_lsb(&b)) << " ";
ss << "\nLegal moves: ";
for (MoveList<LEGAL> it(*this); *it; ++it)
ss << move_to_san(*const_cast<Position*>(this), *it) << " ";
return ss.str();
2011-11-12 19:44:06 +00:00
}
/// Position:hidden_checkers() returns a bitboard of all pinned / discovery check
/// pieces, according to the call parameters. Pinned pieces protect our king,
/// discovery check pieces attack the enemy king.
Bitboard Position::hidden_checkers(Square ksq, Color c, Color toMove) const {
2011-11-12 19:44:06 +00:00
Bitboard b, pinners, result = 0;
2011-11-12 19:44:06 +00:00
// Pinners are sliders that give check when pinned piece is removed
pinners = ( (pieces( ROOK, QUEEN) & PseudoAttacks[ROOK ][ksq])
| (pieces(BISHOP, QUEEN) & PseudoAttacks[BISHOP][ksq])) & pieces(c);
2011-11-12 19:44:06 +00:00
while (pinners)
{
b = between_bb(ksq, pop_lsb(&pinners)) & pieces();
2011-11-12 19:44:06 +00:00
if (!more_than_one(b))
result |= b & pieces(toMove);
2011-11-12 19:44:06 +00:00
}
return result;
}
/// Position::attackers_to() computes a bitboard of all pieces which attack a
/// given square. Slider attacks use occ bitboard as occupancy.
2011-11-12 19:44:06 +00:00
Bitboard Position::attackers_to(Square s, Bitboard occ) const {
2011-11-12 19:44:06 +00:00
return (attacks_from<PAWN>(s, BLACK) & pieces(WHITE, PAWN))
| (attacks_from<PAWN>(s, WHITE) & pieces(BLACK, PAWN))
2011-11-12 19:44:06 +00:00
| (attacks_from<KNIGHT>(s) & pieces(KNIGHT))
| (attacks_bb<ROOK>(s, occ) & pieces(ROOK, QUEEN))
| (attacks_bb<BISHOP>(s, occ) & pieces(BISHOP, QUEEN))
2011-11-12 19:44:06 +00:00
| (attacks_from<KING>(s) & pieces(KING));
}
/// Position::attacks_from() computes a bitboard of all attacks of a given piece
/// put in a given square. Slider attacks use occ bitboard as occupancy.
2011-11-12 19:44:06 +00:00
Bitboard Position::attacks_from(Piece p, Square s, Bitboard occ) {
assert(is_ok(s));
2011-11-12 19:44:06 +00:00
switch (type_of(p))
2011-11-12 19:44:06 +00:00
{
case BISHOP: return attacks_bb<BISHOP>(s, occ);
case ROOK : return attacks_bb<ROOK>(s, occ);
case QUEEN : return attacks_bb<BISHOP>(s, occ) | attacks_bb<ROOK>(s, occ);
default : return StepAttacksBB[p][s];
2011-11-12 19:44:06 +00:00
}
}
/// Position::legal() tests whether a pseudo-legal move is legal
2011-11-12 19:44:06 +00:00
bool Position::legal(Move m, Bitboard pinned) const {
2011-11-12 19:44:06 +00:00
assert(is_ok(m));
assert(pinned == pinned_pieces(sideToMove));
2011-11-12 19:44:06 +00:00
Color us = sideToMove;
Square from = from_sq(m);
2011-11-12 19:44:06 +00:00
assert(color_of(moved_piece(m)) == us);
assert(piece_on(king_square(us)) == make_piece(us, KING));
// En passant captures are a tricky special case. Because they are rather
// uncommon, we do it simply by testing whether the king is attacked after
// the move is made.
if (type_of(m) == ENPASSANT)
2011-11-12 19:44:06 +00:00
{
Color them = ~us;
Square to = to_sq(m);
Square capsq = to + pawn_push(them);
2011-11-12 19:44:06 +00:00
Square ksq = king_square(us);
Bitboard b = (pieces() ^ from ^ capsq) | to;
2011-11-12 19:44:06 +00:00
assert(to == ep_square());
assert(moved_piece(m) == make_piece(us, PAWN));
2011-11-12 19:44:06 +00:00
assert(piece_on(capsq) == make_piece(them, PAWN));
assert(piece_on(to) == NO_PIECE);
2011-11-12 19:44:06 +00:00
return !(attacks_bb< ROOK>(ksq, b) & pieces(them, QUEEN, ROOK))
&& !(attacks_bb<BISHOP>(ksq, b) & pieces(them, QUEEN, BISHOP));
2011-11-12 19:44:06 +00:00
}
// If the moving piece is a king, check whether the destination
// square is attacked by the opponent. Castling moves are checked
// for legality during move generation.
if (type_of(piece_on(from)) == KING)
return type_of(m) == CASTLE || !(attackers_to(to_sq(m)) & pieces(~us));
2011-11-12 19:44:06 +00:00
// A non-king move is legal if and only if it is not pinned or it
// is moving along the ray towards or away from the king.
return !pinned
|| !(pinned & from)
|| aligned(from, to_sq(m), king_square(us));
2011-11-12 19:44:06 +00:00
}
/// Position::pseudo_legal() takes a random move and tests whether the move is
/// pseudo legal. It is used to validate moves from TT that can be corrupted
/// due to SMP concurrent access or hash position key aliasing.
2011-11-12 19:44:06 +00:00
bool Position::pseudo_legal(const Move m) const {
2011-11-12 19:44:06 +00:00
Color us = sideToMove;
Square from = from_sq(m);
Square to = to_sq(m);
Piece pc = moved_piece(m);
2011-11-12 19:44:06 +00:00
// Use a slower but simpler function for uncommon cases
if (type_of(m) != NORMAL)
return MoveList<LEGAL>(*this).contains(m);
2011-11-12 19:44:06 +00:00
// Is not a promotion, so promotion piece must be empty
if (promotion_type(m) - 2 != NO_PIECE_TYPE)
return false;
2011-11-12 19:44:06 +00:00
// If the from square is not occupied by a piece belonging to the side to
// move, the move is obviously not legal.
if (pc == NO_PIECE || color_of(pc) != us)
2011-11-12 19:44:06 +00:00
return false;
// The destination square cannot be occupied by a friendly piece
if (pieces(us) & to)
2011-11-12 19:44:06 +00:00
return false;
// Handle the special case of a pawn move
if (type_of(pc) == PAWN)
2011-11-12 19:44:06 +00:00
{
// Move direction must be compatible with pawn color
int direction = to - from;
if ((us == WHITE) != (direction > 0))
return false;
// We have already handled promotion moves, so destination
// cannot be on the 8/1th rank.
if (rank_of(to) == RANK_8 || rank_of(to) == RANK_1)
2011-11-12 19:44:06 +00:00
return false;
// Proceed according to the square delta between the origin and
// destination squares.
switch (direction)
{
case DELTA_NW:
case DELTA_NE:
case DELTA_SW:
case DELTA_SE:
// Capture. The destination square must be occupied by an enemy
// piece (en passant captures was handled earlier).
if (piece_on(to) == NO_PIECE || color_of(piece_on(to)) != ~us)
return false;
// From and to files must be one file apart, avoids a7h5
if (abs(file_of(from) - file_of(to)) != 1)
return false;
break;
2011-11-12 19:44:06 +00:00
case DELTA_N:
case DELTA_S:
// Pawn push. The destination square must be empty.
if (!empty(to))
return false;
break;
2011-11-12 19:44:06 +00:00
case DELTA_NN:
// Double white pawn push. The destination square must be on the fourth
// rank, and both the destination square and the square between the
// source and destination squares must be empty.
if ( rank_of(to) != RANK_4
|| !empty(to)
|| !empty(from + DELTA_N))
2011-11-12 19:44:06 +00:00
return false;
break;
2011-11-12 19:44:06 +00:00
case DELTA_SS:
// Double black pawn push. The destination square must be on the fifth
// rank, and both the destination square and the square between the
// source and destination squares must be empty.
if ( rank_of(to) != RANK_5
|| !empty(to)
|| !empty(from + DELTA_S))
return false;
break;
2011-11-12 19:44:06 +00:00
default:
return false;
}
}
else if (!(attacks_from(pc, from) & to))
2011-11-12 19:44:06 +00:00
return false;
// Evasions generator already takes care to avoid some kind of illegal moves
// and pl_move_is_legal() relies on this. So we have to take care that the
// same kind of moves are filtered out here.
if (checkers())
{
if (type_of(pc) != KING)
{
// Double check? In this case a king move is required
if (more_than_one(checkers()))
return false;
2011-11-12 19:44:06 +00:00
// Our move must be a blocking evasion or a capture of the checking piece
if (!((between_bb(lsb(checkers()), king_square(us)) | checkers()) & to))
return false;
}
// In case of king moves under check we have to remove king so to catch
// as invalid moves like b1a1 when opposite queen is on c1.
else if (attackers_to(to, pieces() ^ from) & pieces(~us))
return false;
}
2011-11-12 19:44:06 +00:00
return true;
2011-11-12 19:44:06 +00:00
}
/// Position::move_gives_check() tests whether a pseudo-legal move gives a check
bool Position::gives_check(Move m, const CheckInfo& ci) const {
2011-11-12 19:44:06 +00:00
assert(is_ok(m));
assert(ci.dcCandidates == discovered_check_candidates());
assert(color_of(moved_piece(m)) == sideToMove);
2011-11-12 19:44:06 +00:00
Square from = from_sq(m);
Square to = to_sq(m);
PieceType pt = type_of(piece_on(from));
2011-11-12 19:44:06 +00:00
// Direct check ?
if (ci.checkSq[pt] & to)
2011-11-12 19:44:06 +00:00
return true;
// Discovery check ?
if (unlikely(ci.dcCandidates) && (ci.dcCandidates & from))
2011-11-12 19:44:06 +00:00
{
// For pawn and king moves we need to verify also direction
if ( (pt != PAWN && pt != KING)
|| !aligned(from, to, king_square(~sideToMove)))
2011-11-12 19:44:06 +00:00
return true;
}
// Can we skip the ugly special cases ?
if (type_of(m) == NORMAL)
2011-11-12 19:44:06 +00:00
return false;
Color us = sideToMove;
Square ksq = king_square(~us);
2011-11-12 19:44:06 +00:00
switch (type_of(m))
{
case PROMOTION:
return attacks_from(Piece(promotion_type(m)), to, pieces() ^ from) & ksq;
2011-11-12 19:44:06 +00:00
// En passant capture with check ? We have already handled the case
// of direct checks and ordinary discovered check, the only case we
// need to handle is the unusual case of a discovered check through
// the captured pawn.
case ENPASSANT:
2011-11-12 19:44:06 +00:00
{
Square capsq = file_of(to) | rank_of(from);
Bitboard b = (pieces() ^ from ^ capsq) | to;
return (attacks_bb< ROOK>(ksq, b) & pieces(us, QUEEN, ROOK))
| (attacks_bb<BISHOP>(ksq, b) & pieces(us, QUEEN, BISHOP));
2011-11-12 19:44:06 +00:00
}
case CASTLE:
2011-11-12 19:44:06 +00:00
{
Square kfrom = from;
Square rfrom = to; // 'King captures the rook' notation
Square kto = relative_square(us, rfrom > kfrom ? SQ_G1 : SQ_C1);
Square rto = relative_square(us, rfrom > kfrom ? SQ_F1 : SQ_D1);
2011-11-12 19:44:06 +00:00
return (PseudoAttacks[ROOK][rto] & ksq)
&& (attacks_bb<ROOK>(rto, (pieces() ^ kfrom ^ rfrom) | rto | kto) & ksq);
2011-11-12 19:44:06 +00:00
}
default:
assert(false);
return false;
}
2011-11-12 19:44:06 +00:00
}
/// Position::do_move() makes a move, and saves all information necessary
/// to a StateInfo object. The move is assumed to be legal. Pseudo-legal
/// moves should be filtered out before this function is called.
void Position::do_move(Move m, StateInfo& newSt) {
CheckInfo ci(*this);
do_move(m, newSt, ci, gives_check(m, ci));
2011-11-12 19:44:06 +00:00
}
void Position::do_move(Move m, StateInfo& newSt, const CheckInfo& ci, bool moveIsCheck) {
assert(is_ok(m));
2011-11-12 19:44:06 +00:00
assert(&newSt != st);
++nodes;
Key k = st->key;
2011-11-12 19:44:06 +00:00
// Copy some fields of old state to our new StateInfo object except the ones
// which are going to be recalculated from scratch anyway, then switch our state
// pointer to point to the new, ready to be updated, state.
std::memcpy(&newSt, st, StateCopySize64 * sizeof(uint64_t));
2011-11-12 19:44:06 +00:00
newSt.previous = st;
st = &newSt;
// Update side to move
k ^= Zobrist::side;
2011-11-12 19:44:06 +00:00
// Increment ply counters.In particular rule50 will be later reset it to zero
// in case of a capture or a pawn move.
++gamePly;
++st->rule50;
++st->pliesFromNull;
2011-11-12 19:44:06 +00:00
Color us = sideToMove;
Color them = ~us;
Square from = from_sq(m);
Square to = to_sq(m);
Piece pc = piece_on(from);
PieceType pt = type_of(pc);
PieceType captured = type_of(m) == ENPASSANT ? PAWN : type_of(piece_on(to));
2011-11-12 19:44:06 +00:00
assert(color_of(pc) == us);
assert(piece_on(to) == NO_PIECE || color_of(piece_on(to)) == them || type_of(m) == CASTLE);
assert(captured != KING);
2011-11-12 19:44:06 +00:00
if (type_of(m) == CASTLE)
{
assert(pc == make_piece(us, KING));
bool kingSide = to > from;
Square rfrom = to; // Castle is encoded as "king captures friendly rook"
Square rto = relative_square(us, kingSide ? SQ_F1 : SQ_D1);
to = relative_square(us, kingSide ? SQ_G1 : SQ_C1);
captured = NO_PIECE_TYPE;
do_castle(from, to, rfrom, rto);
st->psq += psq[us][ROOK][rto] - psq[us][ROOK][rfrom];
k ^= Zobrist::psq[us][ROOK][rfrom] ^ Zobrist::psq[us][ROOK][rto];
}
if (captured)
{
Square capsq = to;
// If the captured piece is a pawn, update pawn hash key, otherwise
// update non-pawn material.
if (captured == PAWN)
{
if (type_of(m) == ENPASSANT)
{
capsq += pawn_push(them);
assert(pt == PAWN);
assert(to == st->epSquare);
assert(relative_rank(us, to) == RANK_6);
assert(piece_on(to) == NO_PIECE);
assert(piece_on(capsq) == make_piece(them, PAWN));
board[capsq] = NO_PIECE;
}
st->pawnKey ^= Zobrist::psq[them][PAWN][capsq];
}
else
st->npMaterial[them] -= PieceValue[MG][captured];
// Update board and piece lists
remove_piece(capsq, them, captured);
// Update material hash key and prefetch access to materialTable
k ^= Zobrist::psq[them][captured][capsq];
st->materialKey ^= Zobrist::psq[them][captured][pieceCount[them][captured]];
prefetch((char*)thisThread->materialTable[st->materialKey]);
// Update incremental scores
st->psq -= psq[them][captured][capsq];
// Reset rule 50 counter
st->rule50 = 0;
}
2011-11-12 19:44:06 +00:00
// Update hash key
k ^= Zobrist::psq[us][pt][from] ^ Zobrist::psq[us][pt][to];
2011-11-12 19:44:06 +00:00
// Reset en passant square
if (st->epSquare != SQ_NONE)
{
k ^= Zobrist::enpassant[file_of(st->epSquare)];
2011-11-12 19:44:06 +00:00
st->epSquare = SQ_NONE;
}
// Update castle rights if needed
if (st->castleRights && (castleRightsMask[from] | castleRightsMask[to]))
2011-11-12 19:44:06 +00:00
{
int cr = castleRightsMask[from] | castleRightsMask[to];
k ^= Zobrist::castle[st->castleRights & cr];
st->castleRights &= ~cr;
2011-11-12 19:44:06 +00:00
}
// Prefetch TT access as soon as we know the new hash key
prefetch((char*)TT.first_entry(k));
2011-11-12 19:44:06 +00:00
// Move the piece. The tricky Chess960 castle is handled earlier
if (type_of(m) != CASTLE)
move_piece(from, to, us, pt);
2011-11-12 19:44:06 +00:00
// If the moving piece is a pawn do some special extra work
2011-11-12 19:44:06 +00:00
if (pt == PAWN)
{
// Set en-passant square, only if moved pawn can be captured
if ( (int(to) ^ int(from)) == 16
&& (attacks_from<PAWN>(from + pawn_push(us), us) & pieces(them, PAWN)))
2011-11-12 19:44:06 +00:00
{
st->epSquare = Square((from + to) / 2);
k ^= Zobrist::enpassant[file_of(st->epSquare)];
2011-11-12 19:44:06 +00:00
}
if (type_of(m) == PROMOTION)
2011-11-12 19:44:06 +00:00
{
PieceType promotion = promotion_type(m);
2011-11-12 19:44:06 +00:00
assert(relative_rank(us, to) == RANK_8);
2011-11-12 19:44:06 +00:00
assert(promotion >= KNIGHT && promotion <= QUEEN);
remove_piece(to, us, PAWN);
put_piece(to, us, promotion);
2011-11-12 19:44:06 +00:00
// Update hash keys
k ^= Zobrist::psq[us][PAWN][to] ^ Zobrist::psq[us][promotion][to];
st->pawnKey ^= Zobrist::psq[us][PAWN][to];
st->materialKey ^= Zobrist::psq[us][promotion][pieceCount[us][promotion]-1]
^ Zobrist::psq[us][PAWN][pieceCount[us][PAWN]];
2011-11-12 19:44:06 +00:00
// Update incremental score
st->psq += psq[us][promotion][to] - psq[us][PAWN][to];
2011-11-12 19:44:06 +00:00
// Update material
st->npMaterial[us] += PieceValue[MG][promotion];
2011-11-12 19:44:06 +00:00
}
// Update pawn hash key and prefetch access to pawnsTable
st->pawnKey ^= Zobrist::psq[us][PAWN][from] ^ Zobrist::psq[us][PAWN][to];
prefetch((char*)thisThread->pawnsTable[st->pawnKey]);
// Reset rule 50 draw counter
st->rule50 = 0;
2011-11-12 19:44:06 +00:00
}
// Update incremental scores
st->psq += psq[us][pt][to] - psq[us][pt][from];
2011-11-12 19:44:06 +00:00
// Set capture piece
st->capturedType = captured;
2011-11-12 19:44:06 +00:00
// Update the key with the final value
st->key = k;
2011-11-12 19:44:06 +00:00
// Update checkers bitboard, piece must be already moved
st->checkersBB = 0;
2011-11-12 19:44:06 +00:00
if (moveIsCheck)
{
if (type_of(m) != NORMAL)
st->checkersBB = attackers_to(king_square(them)) & pieces(us);
2011-11-12 19:44:06 +00:00
else
{
// Direct checks
if (ci.checkSq[pt] & to)
st->checkersBB |= to;
2011-11-12 19:44:06 +00:00
// Discovery checks
if (ci.dcCandidates && (ci.dcCandidates & from))
2011-11-12 19:44:06 +00:00
{
if (pt != ROOK)
st->checkersBB |= attacks_from<ROOK>(king_square(them)) & pieces(us, QUEEN, ROOK);
2011-11-12 19:44:06 +00:00
if (pt != BISHOP)
st->checkersBB |= attacks_from<BISHOP>(king_square(them)) & pieces(us, QUEEN, BISHOP);
2011-11-12 19:44:06 +00:00
}
}
}
sideToMove = ~sideToMove;
2011-11-12 19:44:06 +00:00
assert(pos_is_ok());
2011-11-12 19:44:06 +00:00
}
/// Position::undo_move() unmakes a move. When it returns, the position should
/// be restored to exactly the same state as before the move was made.
void Position::undo_move(Move m) {
assert(is_ok(m));
2011-11-12 19:44:06 +00:00
sideToMove = ~sideToMove;
2011-11-12 19:44:06 +00:00
Color us = sideToMove;
Color them = ~us;
Square from = from_sq(m);
Square to = to_sq(m);
PieceType pt = type_of(piece_on(to));
PieceType captured = st->capturedType;
2011-11-12 19:44:06 +00:00
assert(empty(from) || type_of(m) == CASTLE);
assert(captured != KING);
2011-11-12 19:44:06 +00:00
if (type_of(m) == PROMOTION)
2011-11-12 19:44:06 +00:00
{
PieceType promotion = promotion_type(m);
2011-11-12 19:44:06 +00:00
assert(promotion == pt);
assert(relative_rank(us, to) == RANK_8);
2011-11-12 19:44:06 +00:00
assert(promotion >= KNIGHT && promotion <= QUEEN);
remove_piece(to, us, promotion);
put_piece(to, us, PAWN);
pt = PAWN;
2011-11-12 19:44:06 +00:00
}
if (type_of(m) == CASTLE)
{
bool kingSide = to > from;
Square rfrom = to; // Castle is encoded as "king captures friendly rook"
Square rto = relative_square(us, kingSide ? SQ_F1 : SQ_D1);
to = relative_square(us, kingSide ? SQ_G1 : SQ_C1);
captured = NO_PIECE_TYPE;
pt = KING;
do_castle(to, from, rto, rfrom);
}
else
move_piece(to, from, us, pt); // Put the piece back at the source square
2011-11-12 19:44:06 +00:00
if (captured)
2011-11-12 19:44:06 +00:00
{
Square capsq = to;
if (type_of(m) == ENPASSANT)
{
capsq -= pawn_push(us);
2011-11-12 19:44:06 +00:00
assert(pt == PAWN);
assert(to == st->previous->epSquare);
assert(relative_rank(us, to) == RANK_6);
assert(piece_on(capsq) == NO_PIECE);
}
2011-11-12 19:44:06 +00:00
put_piece(capsq, them, captured); // Restore the captured piece
2011-11-12 19:44:06 +00:00
}
// Finally point our state pointer back to the previous state
st = st->previous;
--gamePly;
2011-11-12 19:44:06 +00:00
assert(pos_is_ok());
2011-11-12 19:44:06 +00:00
}
/// Position::do_castle() is a helper used to do/undo a castling move. This
/// is a bit tricky, especially in Chess960.
2011-11-12 19:44:06 +00:00
void Position::do_castle(Square kfrom, Square kto, Square rfrom, Square rto) {
2011-11-12 19:44:06 +00:00
// Remove both pieces first since squares could overlap in Chess960
remove_piece(kfrom, sideToMove, KING);
remove_piece(rfrom, sideToMove, ROOK);
board[kfrom] = board[rfrom] = NO_PIECE; // Since remove_piece doesn't do it for us
put_piece(kto, sideToMove, KING);
put_piece(rto, sideToMove, ROOK);
}
2011-11-12 19:44:06 +00:00
/// Position::do(undo)_null_move() is used to do(undo) a "null move": It flips
/// the side to move without executing any move on the board.
void Position::do_null_move(StateInfo& newSt) {
assert(!checkers());
std::memcpy(&newSt, st, sizeof(StateInfo)); // Fully copy here
newSt.previous = st;
st = &newSt;
2011-11-12 19:44:06 +00:00
if (st->epSquare != SQ_NONE)
{
st->key ^= Zobrist::enpassant[file_of(st->epSquare)];
st->epSquare = SQ_NONE;
}
st->key ^= Zobrist::side;
prefetch((char*)TT.first_entry(st->key));
++st->rule50;
st->pliesFromNull = 0;
2011-11-12 19:44:06 +00:00
sideToMove = ~sideToMove;
2011-11-12 19:44:06 +00:00
assert(pos_is_ok());
}
2011-11-12 19:44:06 +00:00
void Position::undo_null_move() {
2011-11-12 19:44:06 +00:00
assert(!checkers());
2011-11-12 19:44:06 +00:00
st = st->previous;
sideToMove = ~sideToMove;
2011-11-12 19:44:06 +00:00
}
/// Position::see() is a static exchange evaluator: It tries to estimate the
/// material gain or loss resulting from a move. Parameter 'asymmThreshold' takes
/// tempi into account. If the side who initiated the capturing sequence does the
/// last capture, he loses a tempo and if the result is below 'asymmThreshold'
/// the capturing sequence is considered bad.
2011-11-12 19:44:06 +00:00
int Position::see_sign(Move m) const {
assert(is_ok(m));
2011-11-12 19:44:06 +00:00
// Early return if SEE cannot be negative because captured piece value
// is not less then capturing one. Note that king moves always return
// here because king midgame value is set to 0.
if (PieceValue[MG][moved_piece(m)] <= PieceValue[MG][piece_on(to_sq(m))])
2011-11-12 19:44:06 +00:00
return 1;
return see(m);
2011-11-12 19:44:06 +00:00
}
int Position::see(Move m, int asymmThreshold) const {
2011-11-12 19:44:06 +00:00
Square from, to;
Bitboard occupied, attackers, stmAttackers;
2011-11-12 19:44:06 +00:00
int swapList[32], slIndex = 1;
PieceType captured;
2011-11-12 19:44:06 +00:00
Color stm;
assert(is_ok(m));
2011-11-12 19:44:06 +00:00
from = from_sq(m);
to = to_sq(m);
swapList[0] = PieceValue[MG][piece_on(to)];
stm = color_of(piece_on(from));
occupied = pieces() ^ from;
2011-11-12 19:44:06 +00:00
// Castle moves are implemented as king capturing the rook so cannot be
// handled correctly. Simply return 0 that is always the correct value
// unless in the rare case the rook ends up under attack.
if (type_of(m) == CASTLE)
return 0;
if (type_of(m) == ENPASSANT)
2011-11-12 19:44:06 +00:00
{
occupied ^= to - pawn_push(stm); // Remove the captured pawn
swapList[0] = PieceValue[MG][PAWN];
2011-11-12 19:44:06 +00:00
}
// Find all attackers to the destination square, with the moving piece
// removed, but possibly an X-ray attacker added behind it.
attackers = attackers_to(to, occupied) & occupied;
2011-11-12 19:44:06 +00:00
// If the opponent has no attackers we are finished
stm = ~stm;
stmAttackers = attackers & pieces(stm);
2011-11-12 19:44:06 +00:00
if (!stmAttackers)
return swapList[0];
2011-11-12 19:44:06 +00:00
// The destination square is defended, which makes things rather more
// difficult to compute. We proceed by building up a "swap list" containing
// the material gain or loss at each stop in a sequence of captures to the
// destination square, where the sides alternately capture, and always
// capture with the least valuable piece. After each capture, we look for
// new X-ray attacks from behind the capturing piece.
captured = type_of(piece_on(from));
2011-11-12 19:44:06 +00:00
do {
assert(slIndex < 32);
2011-11-12 19:44:06 +00:00
// Add the new entry to the swap list
swapList[slIndex] = -swapList[slIndex - 1] + PieceValue[MG][captured];
++slIndex;
2011-11-12 19:44:06 +00:00
// Locate and remove the next least valuable attacker
captured = min_attacker<PAWN>(byTypeBB, to, stmAttackers, occupied, attackers);
stm = ~stm;
stmAttackers = attackers & pieces(stm);
2011-11-12 19:44:06 +00:00
// Stop before processing a king capture
if (captured == KING && stmAttackers)
2011-11-12 19:44:06 +00:00
{
swapList[slIndex++] = QueenValueMg * 16;
2011-11-12 19:44:06 +00:00
break;
}
2011-11-12 19:44:06 +00:00
} while (stmAttackers);
// If we are doing asymmetric SEE evaluation and the same side does the first
// and the last capture, he loses a tempo and gain must be at least worth
// 'asymmThreshold', otherwise we replace the score with a very low value,
// before negamaxing.
if (asymmThreshold)
for (int i = 0; i < slIndex; i += 2)
if (swapList[i] < asymmThreshold)
swapList[i] = - QueenValueMg * 16;
2011-11-12 19:44:06 +00:00
// Having built the swap list, we negamax through it to find the best
// achievable score from the point of view of the side to move.
while (--slIndex)
swapList[slIndex - 1] = std::min(-swapList[slIndex], swapList[slIndex - 1]);
2011-11-12 19:44:06 +00:00
return swapList[0];
}
/// Position::clear() erases the position object to a pristine state, with an
/// empty board, white to move, and no castling rights.
void Position::clear() {
std::memset(this, 0, sizeof(Position));
startState.epSquare = SQ_NONE;
2011-11-12 19:44:06 +00:00
st = &startState;
for (int i = 0; i < PIECE_TYPE_NB; ++i)
for (int j = 0; j < 16; ++j)
pieceList[WHITE][i][j] = pieceList[BLACK][i][j] = SQ_NONE;
2011-11-12 19:44:06 +00:00
}
/// Position::compute_key() computes the hash key of the position. The hash
/// key is usually updated incrementally as moves are made and unmade, the
/// compute_key() function is only used when a new position is set up, and
/// to verify the correctness of the hash key when running in debug mode.
Key Position::compute_key() const {
Key k = Zobrist::castle[st->castleRights];
2011-11-12 19:44:06 +00:00
for (Bitboard b = pieces(); b; )
{
Square s = pop_lsb(&b);
k ^= Zobrist::psq[color_of(piece_on(s))][type_of(piece_on(s))][s];
}
2011-11-12 19:44:06 +00:00
if (ep_square() != SQ_NONE)
k ^= Zobrist::enpassant[file_of(ep_square())];
2011-11-12 19:44:06 +00:00
if (sideToMove == BLACK)
k ^= Zobrist::side;
2011-11-12 19:44:06 +00:00
return k;
2011-11-12 19:44:06 +00:00
}
/// Position::compute_pawn_key() computes the hash key of the position. The
/// hash key is usually updated incrementally as moves are made and unmade,
/// the compute_pawn_key() function is only used when a new position is set
/// up, and to verify the correctness of the pawn hash key when running in
/// debug mode.
Key Position::compute_pawn_key() const {
Key k = 0;
2011-11-12 19:44:06 +00:00
for (Bitboard b = pieces(PAWN); b; )
2011-11-12 19:44:06 +00:00
{
Square s = pop_lsb(&b);
k ^= Zobrist::psq[color_of(piece_on(s))][PAWN][s];
2011-11-12 19:44:06 +00:00
}
return k;
2011-11-12 19:44:06 +00:00
}
/// Position::compute_material_key() computes the hash key of the position.
/// The hash key is usually updated incrementally as moves are made and unmade,
/// the compute_material_key() function is only used when a new position is set
/// up, and to verify the correctness of the material hash key when running in
/// debug mode.
Key Position::compute_material_key() const {
Key k = 0;
2011-11-12 19:44:06 +00:00
for (Color c = WHITE; c <= BLACK; ++c)
for (PieceType pt = PAWN; pt <= QUEEN; ++pt)
for (int cnt = 0; cnt < pieceCount[c][pt]; ++cnt)
k ^= Zobrist::psq[c][pt][cnt];
return k;
2011-11-12 19:44:06 +00:00
}
/// Position::compute_psq_score() computes the incremental scores for the middle
2011-11-12 19:44:06 +00:00
/// game and the endgame. These functions are used to initialize the incremental
/// scores when a new position is set up, and to verify that the scores are correctly
/// updated by do_move and undo_move when the program is running in debug mode.
Score Position::compute_psq_score() const {
2011-11-12 19:44:06 +00:00
Score score = SCORE_ZERO;
2011-11-12 19:44:06 +00:00
for (Bitboard b = pieces(); b; )
{
Square s = pop_lsb(&b);
Piece pc = piece_on(s);
score += psq[color_of(pc)][type_of(pc)][s];
}
2011-11-12 19:44:06 +00:00
return score;
2011-11-12 19:44:06 +00:00
}
/// Position::compute_non_pawn_material() computes the total non-pawn middle
/// game material value for the given side. Material values are updated
/// incrementally during the search, this function is only used while
/// initializing a new Position object.
Value Position::compute_non_pawn_material(Color c) const {
Value value = VALUE_ZERO;
2011-11-12 19:44:06 +00:00
for (PieceType pt = KNIGHT; pt <= QUEEN; ++pt)
value += pieceCount[c][pt] * PieceValue[MG][pt];
2011-11-12 19:44:06 +00:00
return value;
2011-11-12 19:44:06 +00:00
}
/// Position::is_draw() tests whether the position is drawn by material,
/// repetition, or the 50 moves rule. It does not detect stalemates, this
/// must be done by the search.
bool Position::is_draw() const {
// Draw by material?
if ( !pieces(PAWN)
&& (non_pawn_material(WHITE) + non_pawn_material(BLACK) <= BishopValueMg))
2011-11-12 19:44:06 +00:00
return true;
// Draw by the 50 moves rule?
if (st->rule50 > 99 && (!checkers() || MoveList<LEGAL>(*this).size()))
2011-11-12 19:44:06 +00:00
return true;
int i = 4, e = std::min(st->rule50, st->pliesFromNull);
if (i <= e)
{
StateInfo* stp = st->previous->previous;
do {
stp = stp->previous->previous;
if (stp->key == st->key)
return true; // Draw after first repetition
i += 2;
} while (i <= e);
}
2011-11-12 19:44:06 +00:00
return false;
}
/// Position::flip() flips position with the white and black sides reversed. This
2011-11-12 19:44:06 +00:00
/// is only useful for debugging especially for finding evaluation symmetry bugs.
static char toggle_case(char c) {
return char(islower(c) ? toupper(c) : tolower(c));
}
void Position::flip() {
2011-11-12 19:44:06 +00:00
string f, token;
std::stringstream ss(fen());
2011-11-12 19:44:06 +00:00
for (Rank rank = RANK_8; rank >= RANK_1; --rank) // Piece placement
{
std::getline(ss, token, rank > RANK_1 ? '/' : ' ');
f.insert(0, token + (f.empty() ? " " : "/"));
}
2011-11-12 19:44:06 +00:00
ss >> token; // Active color
f += (token == "w" ? "B " : "W "); // Will be lowercased later
ss >> token; // Castling availability
f += token + " ";
2011-11-12 19:44:06 +00:00
std::transform(f.begin(), f.end(), f.begin(), toggle_case);
2011-11-12 19:44:06 +00:00
ss >> token; // En passant square
f += (token == "-" ? token : token.replace(1, 1, token[1] == '3' ? "6" : "3"));
2011-11-12 19:44:06 +00:00
std::getline(ss, token); // Half and full moves
f += token;
2011-11-12 19:44:06 +00:00
set(f, is_chess960(), this_thread());
2011-11-12 19:44:06 +00:00
assert(pos_is_ok());
2011-11-12 19:44:06 +00:00
}
/// Position::pos_is_ok() performs some consitency checks for the position object.
2011-11-12 19:44:06 +00:00
/// This is meant to be helpful when debugging.
bool Position::pos_is_ok(int* failedStep) const {
2011-11-12 19:44:06 +00:00
int dummy, *step = failedStep ? failedStep : &dummy;
2011-11-12 19:44:06 +00:00
// What features of the position should be verified?
const bool all = false;
const bool debugBitboards = all || false;
const bool debugKingCount = all || false;
const bool debugKingCapture = all || false;
const bool debugCheckerCount = all || false;
const bool debugKey = all || false;
const bool debugMaterialKey = all || false;
const bool debugPawnKey = all || false;
const bool debugIncrementalEval = all || false;
const bool debugNonPawnMaterial = all || false;
const bool debugPieceCounts = all || false;
const bool debugPieceList = all || false;
const bool debugCastleSquares = all || false;
*step = 1;
if (sideToMove != WHITE && sideToMove != BLACK)
2011-11-12 19:44:06 +00:00
return false;
if ((*step)++, piece_on(king_square(WHITE)) != W_KING)
2011-11-12 19:44:06 +00:00
return false;
if ((*step)++, piece_on(king_square(BLACK)) != B_KING)
2011-11-12 19:44:06 +00:00
return false;
if ((*step)++, debugKingCount)
2011-11-12 19:44:06 +00:00
{
int kingCount[COLOR_NB] = {};
for (Square s = SQ_A1; s <= SQ_H8; ++s)
if (type_of(piece_on(s)) == KING)
++kingCount[color_of(piece_on(s))];
2011-11-12 19:44:06 +00:00
if (kingCount[0] != 1 || kingCount[1] != 1)
return false;
}
if ((*step)++, debugKingCapture)
if (attackers_to(king_square(~sideToMove)) & pieces(sideToMove))
2011-11-12 19:44:06 +00:00
return false;
if ((*step)++, debugCheckerCount && popcount<Full>(st->checkersBB) > 2)
2011-11-12 19:44:06 +00:00
return false;
if ((*step)++, debugBitboards)
2011-11-12 19:44:06 +00:00
{
// The intersection of the white and black pieces must be empty
if (pieces(WHITE) & pieces(BLACK))
2011-11-12 19:44:06 +00:00
return false;
// The union of the white and black pieces must be equal to all
// occupied squares
if ((pieces(WHITE) | pieces(BLACK)) != pieces())
2011-11-12 19:44:06 +00:00
return false;
// Separate piece type bitboards must have empty intersections
for (PieceType p1 = PAWN; p1 <= KING; ++p1)
for (PieceType p2 = PAWN; p2 <= KING; ++p2)
2011-11-12 19:44:06 +00:00
if (p1 != p2 && (pieces(p1) & pieces(p2)))
return false;
}
if ((*step)++, ep_square() != SQ_NONE && relative_rank(sideToMove, ep_square()) != RANK_6)
return false;
2011-11-12 19:44:06 +00:00
if ((*step)++, debugKey && st->key != compute_key())
2011-11-12 19:44:06 +00:00
return false;
if ((*step)++, debugPawnKey && st->pawnKey != compute_pawn_key())
2011-11-12 19:44:06 +00:00
return false;
if ((*step)++, debugMaterialKey && st->materialKey != compute_material_key())
2011-11-12 19:44:06 +00:00
return false;
if ((*step)++, debugIncrementalEval && st->psq != compute_psq_score())
2011-11-12 19:44:06 +00:00
return false;
if ((*step)++, debugNonPawnMaterial)
if ( st->npMaterial[WHITE] != compute_non_pawn_material(WHITE)
|| st->npMaterial[BLACK] != compute_non_pawn_material(BLACK))
2011-11-12 19:44:06 +00:00
return false;
if ((*step)++, debugPieceCounts)
for (Color c = WHITE; c <= BLACK; ++c)
for (PieceType pt = PAWN; pt <= KING; ++pt)
if (pieceCount[c][pt] != popcount<Full>(pieces(c, pt)))
2011-11-12 19:44:06 +00:00
return false;
if ((*step)++, debugPieceList)
for (Color c = WHITE; c <= BLACK; ++c)
for (PieceType pt = PAWN; pt <= KING; ++pt)
for (int i = 0; i < pieceCount[c][pt]; ++i)
if ( board[pieceList[c][pt][i]] != make_piece(c, pt)
|| index[pieceList[c][pt][i]] != i)
2011-11-12 19:44:06 +00:00
return false;
if ((*step)++, debugCastleSquares)
for (Color c = WHITE; c <= BLACK; ++c)
for (CastlingSide s = KING_SIDE; s <= QUEEN_SIDE; s = CastlingSide(s + 1))
{
CastleRight cr = make_castle_right(c, s);
if (!can_castle(cr))
continue;
2011-11-12 19:44:06 +00:00
if ( (castleRightsMask[king_square(c)] & cr) != cr
|| piece_on(castleRookSquare[c][s]) != make_piece(c, ROOK)
|| castleRightsMask[castleRookSquare[c][s]] != cr)
return false;
}
2011-11-12 19:44:06 +00:00
*step = 0;
2011-11-12 19:44:06 +00:00
return true;
}