mirror of
https://github.com/peterosterlund2/droidfish.git
synced 2025-12-11 08:32:41 +01:00
Update Stockfish to development version from 2020-06-17
This commit is contained in:
@@ -28,66 +28,21 @@
|
||||
|
||||
TimeManagement Time; // Our global time management object
|
||||
|
||||
namespace {
|
||||
|
||||
enum TimeType { OptimumTime, MaxTime };
|
||||
|
||||
constexpr int MoveHorizon = 50; // Plan time management at most this many moves ahead
|
||||
constexpr double MaxRatio = 7.3; // When in trouble, we can step over reserved time with this ratio
|
||||
constexpr double StealRatio = 0.34; // However we must not steal time from remaining moves over this ratio
|
||||
|
||||
|
||||
// move_importance() is a skew-logistic function based on naive statistical
|
||||
// analysis of "how many games are still undecided after n half-moves". Game
|
||||
// is considered "undecided" as long as neither side has >275cp advantage.
|
||||
// Data was extracted from the CCRL game database with some simple filtering criteria.
|
||||
|
||||
double move_importance(int ply) {
|
||||
|
||||
constexpr double XScale = 6.85;
|
||||
constexpr double XShift = 64.5;
|
||||
constexpr double Skew = 0.171;
|
||||
|
||||
return pow((1 + exp((ply - XShift) / XScale)), -Skew) + DBL_MIN; // Ensure non-zero
|
||||
}
|
||||
|
||||
template<TimeType T>
|
||||
TimePoint remaining(TimePoint myTime, int movesToGo, int ply, TimePoint slowMover) {
|
||||
|
||||
constexpr double TMaxRatio = (T == OptimumTime ? 1.0 : MaxRatio);
|
||||
constexpr double TStealRatio = (T == OptimumTime ? 0.0 : StealRatio);
|
||||
|
||||
double moveImportance = (move_importance(ply) * slowMover) / 100.0;
|
||||
double otherMovesImportance = 0.0;
|
||||
|
||||
for (int i = 1; i < movesToGo; ++i)
|
||||
otherMovesImportance += move_importance(ply + 2 * i);
|
||||
|
||||
double ratio1 = (TMaxRatio * moveImportance) / (TMaxRatio * moveImportance + otherMovesImportance);
|
||||
double ratio2 = (moveImportance + TStealRatio * otherMovesImportance) / (moveImportance + otherMovesImportance);
|
||||
|
||||
return TimePoint(myTime * std::min(ratio1, ratio2)); // Intel C++ asks for an explicit cast
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
|
||||
/// init() is called at the beginning of the search and calculates the allowed
|
||||
/// thinking time out of the time control and current game ply. We support four
|
||||
/// different kinds of time controls, passed in 'limits':
|
||||
///
|
||||
/// inc == 0 && movestogo == 0 means: x basetime [sudden death!]
|
||||
/// inc == 0 && movestogo != 0 means: x moves in y minutes
|
||||
/// inc > 0 && movestogo == 0 means: x basetime + z increment
|
||||
/// inc > 0 && movestogo != 0 means: x moves in y minutes + z increment
|
||||
/// init() is called at the beginning of the search and calculates the bounds
|
||||
/// of time allowed for the current game ply. We currently support:
|
||||
// 1) x basetime (+z increment)
|
||||
// 2) x moves in y seconds (+z increment)
|
||||
|
||||
void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) {
|
||||
|
||||
TimePoint minThinkingTime = Options["Minimum Thinking Time"];
|
||||
TimePoint moveOverhead = Options["Move Overhead"];
|
||||
TimePoint slowMover = Options["Slow Mover"];
|
||||
TimePoint npmsec = Options["nodestime"];
|
||||
TimePoint hypMyTime;
|
||||
TimePoint minThinkingTime = TimePoint(Options["Minimum Thinking Time"]);
|
||||
TimePoint moveOverhead = TimePoint(Options["Move Overhead"]);
|
||||
TimePoint slowMover = TimePoint(Options["Slow Mover"]);
|
||||
TimePoint npmsec = TimePoint(Options["nodestime"]);
|
||||
|
||||
// opt_scale is a percentage of available time to use for the current move.
|
||||
// max_scale is a multiplier applied to optimumTime.
|
||||
double opt_scale, max_scale;
|
||||
|
||||
// If we have to play in 'nodes as time' mode, then convert from time
|
||||
// to nodes, and use resulting values in time management formulas.
|
||||
@@ -105,29 +60,40 @@ void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) {
|
||||
}
|
||||
|
||||
startTime = limits.startTime;
|
||||
optimumTime = maximumTime = std::max(limits.time[us], minThinkingTime);
|
||||
|
||||
const int maxMTG = limits.movestogo ? std::min(limits.movestogo, MoveHorizon) : MoveHorizon;
|
||||
//Maximum move horizon of 50 moves
|
||||
int mtg = limits.movestogo ? std::min(limits.movestogo, 50) : 50;
|
||||
|
||||
// We calculate optimum time usage for different hypothetical "moves to go" values
|
||||
// and choose the minimum of calculated search time values. Usually the greatest
|
||||
// hypMTG gives the minimum values.
|
||||
for (int hypMTG = 1; hypMTG <= maxMTG; ++hypMTG)
|
||||
// Make sure timeLeft is > 0 since we may use it as a divisor
|
||||
TimePoint timeLeft = std::max(TimePoint(1),
|
||||
limits.time[us] + limits.inc[us] * (mtg - 1) - moveOverhead * (2 + mtg));
|
||||
|
||||
// A user may scale time usage by setting UCI option "Slow Mover"
|
||||
// Default is 100 and changing this value will probably lose elo.
|
||||
timeLeft = slowMover * timeLeft / 100;
|
||||
|
||||
// x basetime (+ z increment)
|
||||
// If there is a healthy increment, timeLeft can exceed actual available
|
||||
// game time for the current move, so also cap to 20% of available game time.
|
||||
if (limits.movestogo == 0)
|
||||
{
|
||||
// Calculate thinking time for hypothetical "moves to go"-value
|
||||
hypMyTime = limits.time[us]
|
||||
+ limits.inc[us] * (hypMTG - 1)
|
||||
- moveOverhead * (2 + std::min(hypMTG, 40));
|
||||
|
||||
hypMyTime = std::max(hypMyTime, TimePoint(0));
|
||||
|
||||
TimePoint t1 = minThinkingTime + remaining<OptimumTime>(hypMyTime, hypMTG, ply, slowMover);
|
||||
TimePoint t2 = minThinkingTime + remaining<MaxTime >(hypMyTime, hypMTG, ply, slowMover);
|
||||
|
||||
optimumTime = std::min(t1, optimumTime);
|
||||
maximumTime = std::min(t2, maximumTime);
|
||||
opt_scale = std::min(0.008 + std::pow(ply + 3.0, 0.5) / 250.0,
|
||||
0.2 * limits.time[us] / double(timeLeft));
|
||||
max_scale = 4 + std::min(36, ply) / 12.0;
|
||||
}
|
||||
|
||||
// x moves in y seconds (+ z increment)
|
||||
else
|
||||
{
|
||||
opt_scale = std::min((0.8 + ply / 128.0) / mtg,
|
||||
0.8 * limits.time[us] / double(timeLeft));
|
||||
max_scale = std::min(6.3, 1.5 + 0.11 * mtg);
|
||||
}
|
||||
|
||||
// Never use more than 80% of the available time for this move
|
||||
optimumTime = std::max(minThinkingTime, TimePoint(opt_scale * timeLeft));
|
||||
maximumTime = TimePoint(std::min(0.8 * limits.time[us] - moveOverhead, max_scale * optimumTime));
|
||||
|
||||
if (Options["Ponder"])
|
||||
optimumTime += optimumTime / 4;
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user